PII: S0040-4020(96)01077-0

Chiral Electrophilic "Glycinal" Equivalents. New Synthons for Optically Active α-Amino Acids and 4-Substituted 2-Oxazolidinones

Hirofumi Matsunaga, Tadao Ishizuka and Takehisa Kunieda*

Faculty of Pharmaceutical Sciences, Kumamoto University
5-1 Oe-honmachi, Kumamoto 862, Japan

Abstract: The thermal reaction of $3-[(1S)-2-alkoxy-1-apocamphanecarbonyl]-2-oxazolones (21a-c) with dialkyl azodicarboxylates (9) results in exclusive formation of <math>\{4+2\}$ type cycloadducts (22 and 23) with moderate levels of diastereofacial selection (up to 72% d.e.). The diastereomers thus obtained were readily purified and subsequent treatment with acidic methanol followed by removal of the auxiliary with LiBH4/MeOH (1:2) gave optically pure 4-methoxy-5-hydrazino-2-oxazolidinones (26 and 27), which serve as α -aminoaldehyde templates useful for the synthesis of a wide variety of optically active α -amino acids as well as 4-alkyl and 4-aryl-2-oxazolidinones.

© 1997, Elsevier Science Ltd. All rights reserved.

Recently we have developed a promising methodology for the versatile synthesis of 2-amino alcohols which involves highly regio- and stereoselective introduction of easily replaceable groups (X and Y) at the 4,5-olefinic moiety of the 2-oxazolone (1) followed by stereospecific and stepwise substitution with appropriate groups as key steps (Scheme 1).²

Scheme 1

Versatility of this method would be further improved by developing a new class of chiral synthons (2) which permit stereospecific substitution of Y-group prior to the replacement of X-substituents (route B).

This paper describes synthetic potential of such synthons obtainable from chiral N-acyl-2-oxazolones such as 21 and azodicarboxylates (9) with emphasis on chiral synthesis of α -amino acids³ and 4-substituted 2-oxazolidinones.

RESULTS AND DISCUSSION

With our continuing interest in the synthetic potential of 2-oxazolone as a building block, we have explored its dienophilic ability^{4,5} in cycloaddition reactions with dialkyl azodicarboxylates.⁶⁻⁹ The thermal cycloadditions of N-acyl-2-oxazolones (8) to azodicarboxylates (9) were found to proceed smoothly under mild conditions (80 °C for 8h) to give the regio-controlled [4 + 2] cycloadducts (10) exclusively, though there exist two other possible addition modes:⁶⁻⁸ neither diazetidine (12) (1,2-addition) nor isoxazolidines (13) (1,3-addition) were detected (Scheme 2). Thus, reaction of N-pivaloyl- and N-benzoyl-2-oxazolones with diethyl azodicarboxylate gave nearly 90% yield of the cycloadducts (10), which upon subsequent treatment with acidic methanol, followed by deacylation gave *trans*-4-methoxy-5-hydrazino-2-oxazolidinones (11) exclusively. The 2-oxazolidinone thus formed serves as an electrophilic glycinal equivalent which would be expected to smoothly undergo stereospecific substitution of the 4-methoxy groups by a variety of alkyl and aryl nucleophiles producing α -amino aldehyde derivatives.

Preparation of Chiral Carboxylic Acid Auxiliaries: A series of (1S,2R)-2-alkoxy-1-apocamphanecarboxylic acids (16a,c,d) having different alkoxy substituent in size were prepared as chiral auxiliaries by standard procedures. Thus, methyl (1S)-2-exo-hydroxy-1-apocamphanecarboxylate (14), 10 prepared by the reduction of methyl (1S)-ketopinate with L-Selectride®, was smoothly alkylated with methyl and allyl halides to give the 2-methoxy and 2-allyloxy derivatives (15a and 15b), while O-alkylation with neopentyl iodide resulted in the mixture of 2-exo and 2-endo-alkoxy derivatives (14 and 17) as a result of partial retro-aldol type cleavage followed by reclosure. 10 The neopentyloxy derivative (16d) was cleanly prepared by a lengthy, alternative route involving hydroxyl protection via 18 and 19 (Scheme 3).

Diastereoselective [4 + 2] Cycloaddition: 1 Optically active 3-[(1S)-2-exo-alkoxy-1-apocam-phanecarbonyl]-2-oxazolones (21a-c) were readily prepared by treatment of the lithium salts derived from the carboxylic acids with DPPOx¹¹ (20).

i) R^1X , NaH; ii) KOH, EtOH; iii) Pd-C, H_2 ; iv) LiAl H_4 ; v) MOMCl, NaH; vi) Pd-C, H_2 ; vii) Me_3CCH_2 l, NaH; viii) HCl/MeOH; ix) 1) PCC, 2) KMnO $_4$.

Scheme 3

Treatment of 3-[(1S)-2-exo-alkoxy-1-apocamphanecarbonyl]-2-oxazolones (21) with a series of azodicarboxylates (9) in benzene under reflux resulted in excellent yields of a diastereomeric mixture of cycloadducts (22 and 23), in which the former was the major isomer in moderate diastereoselectivity (Table 1).

Table 1. Diastereomeric Ratios Obtained from [4 + 2] Cycloaddition of N-Acyl-2-oxazolones (21a-c) to Azodicarboxylates (9)^a

				• • • • •
R ²	R ³	Time (h)	Yield (%) ^b	22 : 23 ^C
Me	Me	6	83	1.9 : 1
Pr	Me	6	77	2.9 : 1
CH ₂ CMe ₃	Me	12	83	5.3 : 1
Me	Et	6	93	2.6 : 1
₽r	Et	9	76	3.4 : 1
CH ₂ CMe ₃	Et	17	92	5.3 : 1
Me	⊬Pr	12	93	3.2 : 1 (4.9 : 1) ^d
Pr	<i>i</i> -Pr	12.5	76	3.6 : 1
CH ₂ CMe ₃	<i>i</i> -Pr	19	85	5.7 : 1
Pr	BzI	6	86	4.6 : 1
CH ₂ CMe ₃	BzI	18	93	6.2 : 1
				_

^a The reaction was performed in refluxing benzene. ^b Isolated yields.

 $^{^{\}it c}$ Determined based on $^{\it 1}\text{H-NMR}$ (400 MHz) analysis. $^{\it d}$ Under UV-irradiation at room temperature.

Scheme 4

As was previously reported for N-apocamphanecarbonylated-2-oxazolidinones, 2a,12 the isomeric cycloadducts (22 and 23) were easily and efficiently separated by chromatography on silica gel. An ^{1}H NMR analysis indicated that the isolated cycloadducts were 1,4-addition products. In addition, X-ray crystallographic analysis of the key adduct 23 ($R^{1} = R^{2} = Me$) provided unequivocal proof of the [4 + 2] addition structure.

The use of bulky groups for R¹ and R² improved the diastereoselectivity. Thus, the highest selectivity of 72% d.e. was achieved when 2-neopentyloxy-1-apocamphanecarbonyl-oxazolone was reacted with dibenzyl azodicarboxylate. The UV-irradiation with a Hg-lamp (400W) at room temperature also promoted the cycloaddition^{8c,9} and gave a slightly higher diastereoselectivity than that obtained in benzene under reflux. The transition state assembly as illustrated in Figure 1 might be responsible for this diastereofacial selectivity.

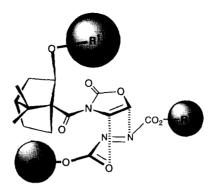


Figure 1. Favored orientation for cycloaddition of 21 to 9.

Exocyclic Deacylation: ¹ The cycloadduct 22 was ring-opened with a catalytic amount of p-toluenesulfonic acid in methanol within a few minutes to form trans-4-methoxy-2-oxazolidinone (24), but the removal of the sterically congested N-acyl auxiliaries was unsatisfactory due to low reactivity and accompanying endocyclic cleavage as far as conventional reagents^{2a,13} including lithium benzylmercaptide^{13g} and lithium hydroperoxide^{13f} were concerned.

The exocyclic selective cleavage of sterically hindered *N*-acyl-2-oxazolidinones was extensively explored because the nondestructive recovery of the 2-oxazolidinones from the *N*-acyl-derivatives would be an important requirement of this class of transformation (Scheme 5). As shown in Table 2, the reductive species derived from LiBH₄/MeOH (1:2) was found to be exceptionally effective for the exocyclic deacylation of 24. This is in contrast to previous findings^{13a,c,d} which reported that some reducing agents preferentially attacked the *endo*-carbonyl groups, resulting in the destruction of 2-oxazolidinone rings. Thus, treatment of *N*-acyl-2-oxazolidinones (24) with LiBH₄/MeOH gave a 70% yield of (4*R*, 5*S*)-trans-4-methoxy-5-hydrazino-2-oxazolidinone (26) in addition to 2-methoxy-1-apocamphane-methanol.¹⁴ The addition of methanol is critical for the selective exocyclic cleavage and, otherwise, 26 was obtained only in poor yield (Table 2). The optimal ratio of LiBH₄:MeOH was 1 to 2, and a combination of NaBH₄, LiCl and MeOH in a molar ratio of 2:2:1 was also effective. Methoxyborane complexes generated *in situ* might serve as active species having the appropriate nucleophilicity to attack the exocyclic carbonyl groups.¹⁵

The generality of this procedure is demonstrated by highly selective *exo*-cleavage of other sterically congested examples such as 28^{2a} , 29^{5a} , 30^{5b} and 31^{16} . Among the reagents examined, the combination of LiBH₄ and MeOH was the reagent of choice to give the most selective results (Table 3).

Reagents (equiv.)	Temp/Time	Yield (%) ²
LiBH ₄ (8), MeOH (16)	0 °C/2.5h	7 0
NaBH ₄ (20), LiCl (20), MeOH (10)	0 °C/24h	68
LiBH ₄ (8) ^{13d}	$0 ^{\circ}\text{C} \rightarrow \text{r.t./2h}$	21
PhCH ₂ OLi (1.5) ^{13a}	$0 ^{\circ}\text{C} ightarrow \text{r.t./2h}$	11
PhCH ₂ SLi (1.5) 13g	0 °C/2h	23
Bu ₂ CuLi (8) ^{2a}	-30 °C → 0 °C/1h	16
H ₂ O ₂ (8), LiOH (2) ^{13f}	0 °C/6h	23

Table 2. Exocyclic Deacylation of N-Acyl-2-oxazolidinone (24) to 26

Table 3. Exocyclic Deacylation of Sterically Congested N-Acyl-2-oxazolidinones (28-31)^a

OMe O OMe 28	OMe 29	30	OMe	OMe
		Yield (%)	
Reagents ^b	2 8	2 9	3 0	3 1
LiBH ₄ -MeOH (1:2)	85	84	91 (9)	82
PhCH ₂ SLi ^{13g}	83	91	5 (90)	0 (100)
PhCH ₂ OLi ^{13a}	28	13 (85)		
LIOOH 13f	51	20 (68)		
LiBH ₄ ^{13d}	62	20 (59)		

^a Isolated yields. Yields recovered unchanged are given in parentheses. ^b Performed as given in Table 2.

The minor cycloadduct 23 was analogously treated to give (4S, 5R)-4-methoxy-5-hydrazino-2-oxazolidinone (27), enantiomer of 26 in 78% yield. Both enantiomers of the 2-oxazolidinones 26 and 27 have synthetic potential as chiral electrophilic "glycinal" equivalents, whose applications to α -amino acids and the derivatives are given below.

Preparation of Optically Pure α-Amino Acids: The readily accessible isopropyl ester 26 was employed as chiral synthon for a variety of (R)-α-amino acids and β-amino alcohols (Scheme 4). The chiral "α-methoxyglycinal" equivalent 26 was treated with organocuprates in the presence of BF₃-OEt₂ to undergo a smooth replacement of the methoxy group with a wide variety of 1° -3° alkyl, aryl and alkenyl groups with full retention of configuration. 2b, 17 Thus, trans-4-substituted-2-oxazolidinones (32) were formed exclusively with

a Isolated yields after almost complete consumption of 24.

no contamination with cis-isomers. Table 4 shows the results of typical BF₃-promoted substitution with organocuprates and allylsilane.¹

i) See Table 4; ii) $(Boc)_2O$, NEt_3 , $DMAP/CH_2Cl_2$; r.t., 4h; iii) $NaBH_4$ (4 eq.)-MeOH (4 eq.)/EtOH; r.t., 24h; iv) KOH (20 eq.), $KMnO_4$ (40 eq.)/t-BuOH-H $_2O$ (2:1); r.t., 17-23h; v) Cs_2CO_3 (0.1 eq.)/MeOH; r.t., 2h; vi) PDC (15 eq.)/DMF; r.t., 6h; vii) CH_2N_2

Scheme 6

Table 4. BF₃-Promoted Substitution of 4-Methoxy-2-oxazolidinone (26) to 32^a

Reagents (equiv.)	H ³	Yield (%)
Bu ₂ CuLi (4)	Bu	79 (81)
i-PrCuCNMgBr (4), LiCl (8.8)	<i>i</i> -Pr	85 (100)
(t-Bu) ₂ CuCN(MgBr) ₂ (4)	<i>t</i> -Bu	75 (87)
cyclo-C ₅ H ₉ CuCNMgBr (4), LiCl (8.8)	cyclo-C ₅ H ₉	80 (80)
cyclo-C ₆ H ₁₁ CuCNMgBr (4), LiCl (8.8)	cyclo-C ₆ H ₁₁	84 (90)
PhCuCNMgBr (4), LiCl (8.8)	Ph	85 (99)
(PhCH ₂) ₂ CuCN(MgCl) ₂ (4)	Bzl	79 (92)
CH ₂ =CHCH ₂ -SiMe ₃ (4)	Allyi	90 (90) ^C
(CH ₂ =CH) ₂ CuCN(MgBr) ₂ (4)	Vinyl	72 (95)

^a Performed at -30 °C. ^b Yields and trans stereochemistry were determined by ¹H-NMR (400MHz) analysis. The values in parentheses are corrected yields based on consumed starting material. ^c Performed at -78 °C \rightarrow r.t..

A Boc group made the 2-oxazolidinone rings more susceptible to nucleophilic attack to lead to ring-opening under mild conditions. ¹⁸ Thus, 3-Boc-2-oxazolidinones (33) were readily cleaved by borohydride reduction in MeOH to give good yields of (R)-N-Boc-2-amioalcohols (34) with no racemization (Table 5). Subsequent treatment with pyridinium dichromate (PDC) resulted in the smooth formation of optically pure (R)-N-Boc- α -amino acid methyl esters (35) (Table 5).

Direct conversion of 33 to optically active α -amino acid methyl esters (35) was readily achieved by treatment with KMnO₄ under basic conditions (Table 5).

Table 5. Conversion of N-Boc-2-Oxazolidinones (33) to Optically Pure (R)-N-Boc-2-Amino alcohols (34) and (R)-N-Boc- α -Amino Acid Methyl Esters (35)^a

					R ³				
Compounds	Bu	<i>i</i> -Pr	t-Bu	cyclo- C ₅ H ₉	<i>cyclo</i> - C ₆ H ₁₁	Ph	PhCH ₂	Allyl	Vinyl
3 4	80%	74%	78%	74%	74%	76%	75%	71%	75%
3 5	81	92	82	82	81	-	54	-	-
3 5 (from 34)	86	89	92	66	66	60	88	82	-

a Isolated yields.

The ring-cleavage of 33 under basic conditions would be expected to proceed via nucleophilic attack at the C-2 carbonyl group on the oxazolidinone ring, followed by the elimination of the hydrazino group to give α -aminoaldehydes (37). As shown in Scheme 7, reductive and oxidative treatments of 33 give 2-aminoalcohols (34) and α -amino acids (38), respectively. The intervention of α -aminoaldehydes (37) as intermediates is suggested by the fact that *trans*-5-methoxy-2-oxazolidinone (36) is readily formed on treatment of 33 with Cs₂CO₃ in MeOH.

Preparation of 4-Substituted 2-Oxazolidinones: Treatment of (R)-N-Boc-2-aminoalcohols (34) with thionyl chloride in THF gave quantitative yields of (R)-4-substituted-2-oxazolidinones (39), which served as Evans' type chiral auxiliaries (R)-4-substituted-2-oxazolidinones (39), which served as Evans' type chiral auxiliaries (R)-4-substituted-2-oxazolidinones (39), which served as Evans' type chiral auxiliaries (R)-4-substituted-2-oxazolidinones (39), which served as Evans' type chiral auxiliaries (R)-4-substituted-2-oxazolidinones (39), which served as Evans' type chiral auxiliaries (R)-4-substituted-2-oxazolidinones (39), which served as Evans' type chiral auxiliaries (R)-6.

Table 6. Conversion of (R)-N-Boc-2-Aminoalcohols (34) to (R)-4-Substituted-2-oxazolidinones (39)

R ³	Yield (%) ^a	[α]D	Lit. [α] _D
<i>i</i> -Pr	100	+17.5 ° (EtOH)	-16.6 ° (EtOH) ^b
<i>t</i> -Bu	100	+21.8 ° (MeOH)	+22.8 ° (MeOH) ^C
Ph	100	-56.7 ° (CHCl ₃)	-57.1 ° (CHCl ₃) ^C
PhCH ₂	100	+63.0 ° (CHCl ₃)	+62.5 ° (CHCl ₃) ^C

a Isolated yields. b (4S)-Form. See ref. 20. C See ref. 12.

CONCLUSION

This article has further demonstrated the synthetic potential of simple heterocycle 2-oxazolone as a building block. Both enantiomers of *trans*-4-methoxy-5-hydrazino-2-oxazolidinones (**26** and **27**), which are readily available from regio- and diastereoselective [4 + 2] cycloaddition of chiral N-(2-exo-alkoxy-1-apocamphanecarbonyl)-2-oxazolones with azodicarboxylates, serve well as new class of chiral synthons for a wide variety of α -amino acids and 4-substituted-2-oxazolidinones. The chiral 2-oxazolidinones of type **33** can serve as precursors for optically active " α -aminoaldehyde" useful in aldol condensations and Wittig reactions as well. This will be a subject of a separate paper.

EXPERIMENTAL SECTION

Melting points were determined with a Yanaco micro melting point apparatus and are uncorrected. Optical rotations were measured with a JASCO DIP 370 polarimeter. ¹H NMR spectra were recorded in CDCl₃ with tetramethylsilane as an internal standard on a JEOL ALPHA 500 (500 MHz), JEOL JNM-GX400 (400 MHz), Hitachi R-24B (60 MHz) and Hitachi R-1200 (60 MHz) spectrometers. Infrared spectra were measured with a JASCO IR Report-100 spectrometer. MS and HRMS (EI or CI) were obtained with a JEOL JMS-DX303HF mass spectrometer.

Column chromatography was performed using silica gel 60 (70-230 mesh, Merck). All the solvents were distilled before use; THF over Na/benzophenone, Et₂O over LiAlH₄, CH₂Cl₂ over CaH₂, MeOH over NaOMe and benzene over CaH₂.

Azodicarboxylates were purchased from Tokyo Kasei and Aldrich and used without further purification.

- **3-Pivaloyl-2-oxazolone** (8; $R^1 = CMe_3$). A mixture of 2-oxazolone (7.5 g, 88.1 mmol) and pivaloyl chloride (10.6 g, 88.1 mmol) in CH_2Cl_2 (200 mL) was stirred in the presence of NEt₃ (8.9 g, 88.1 mmol) at 0 °C for 10 h. The solution was passed through a silica gel-pad (EtOAc as eluent) and purified by chromatography on silica gel (hexane- CH_2Cl_2 (8:2) to CH_2Cl_2) to give N-pivaloyl-2-oxazolone (10.3 g, 69%) as a colorless oil; ¹H NMR (60 MHz, CDCl₃) δ 1.43 (9H, s), 6.78 (1H, d, J = 2.2 Hz), 7.23 (1H, d, J = 2.2 Hz).
- **3-Benzoyl-2-oxazolone** (8; $R^1 = Ph$).²¹ Analogously as above, this compound was obtained quantitatively as colorless crystals, mp 79-80 °C (from CH₂Cl₂-hexane); ¹H NMR (60 MHz, CDCl₃) δ 6.84 (1H, d, J = 2.2 Hz), 7.22 (1H, d, J = 2.2 Hz), 7.35-7.85 (5H, m).
- (15,2R)-2-Methoxy-7,7-dimethylbicyclo[2.2.1]heptane-1-carboxylic Acid [(15,2R)-2-methoxy-1-apocamphanecarboxylic acid; MAC acid] (16a). Methyl (15,2R)-2-hydroxy-7,7-dimethylbicyclo[2.2.1]heptane-1-carboxylate¹⁰ (14) (4.3 g, 21.5 mmol) was methylated with MeI (12.2 g, 85.9 mmol) and NaH (60% in oil; 2.1 g, 51.5 mmol) in THF (47.5 mL) at room temperature for 2 h. The excess of NaH was quenched with H₂O (10 mL) at 0 °C and EtOAc (200 mL) was added. The whole was washed (brine, 50 mL × 3), dried (Na₂SO₄) and evaporated *in vacuo* to give the methoxy ester 15a as an oil, which was saponified with KOH (24.1 g, 0.4 mol) in refluxing EtOH (123 mL) and H₂O (2 mL) for 1 h. The usual work-up, followed by column chromatography on silica gel (CH₂Cl₂ to CH₂Cl₂-EtOAc (8:2)) gave 16a (3.4 g, 80%) as colorless crystals, mp 85-85.5 °C (from hexane); $[\alpha]^{26}D 82.5$ ° (c 1.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.04 (3H, s), 1.10-1.13 (1H, m), 1.17 (3H, s), 1.26-1.33 (1H, m), 1.75-1.93 (3H, m), 1.96-2.02 (1H, m), 2.34-2.41 (1H, m), 3.40 (3H, s), 3.67 (1H, dd, J = 3.3, 7.3 Hz), 11.1 (1H, br). Anal. Calcd for C₁₁H₁₈O₃: C, 66.64; H, 9.15. Found: C, 66.42; H, 8.93.
- (18,2R)-2-Allyloxy-7,7-dimethylbicyclo[2.2.1]heptane-1-carboxylic Acid (16b). Similarly, 14 (2.0 g, 10 mmol) with allyl bromide (24.2 g, 0.2 mol) gave methyl (18,2R)-2-allyloxy-7,7-dimethylbicyclo[2.2.1]heptane-1-carboxylate (15b) (2.2 g, 90%) as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.05 (3H, s), 1.03-1.30 (1H, m), 1.31 (3H, s), 1.41-1.56 (1H, m), 1.64-1.82 (3H, m), 1.86-2.06 (2H, m), 3.68 (3H, s), 3.72 (1H, dd, J = 3.7, 7.7 Hz), 3.87 (1H, ddt, J = 1.5, 5.1, 13.6 Hz), 3.97 (1H, ddt, J = 1.5, 5.1, 13.6 Hz), 5.10 (1H, dq, J = 1.5, 3.3 Hz), 5.21 (1H, dq, J = 1.8, 3.7 Hz), 5.77-5.86 (1H, m).

The methyl ester **15b** (9.4 g, 39.3 mmol) was heated in EtOH (250 mL) and H_2O (6.3 mL) under reflux for 1 h in the presence of KOH (44.1 g, 0.8 mol). The usual work-up, followed by chromatography on silica gel (CH₂Cl₂ to CH₂Cl₂-EtOAc (9:1)) afforded a quantitative yield of **16b** (8.8 g) as a colorless oil; ¹H NMR (60 MHz, CDCl₃) δ 0.90-2.55 (7H, m), 1.05 (3H, s), 1.23 (3H, s), 3.65-3.92 (1H, m), 3.92-4.25 (2H, m), 5.03-5.47 (2H, m), 5.6-6.22 (1H, m), 11.2 (1H, br).

(15,2R)-2-Propoxy-7,7-dimethylbicyclo[2.2.1]heptane-1-carboxylic Acid (16c). A solution of 16b (8.8 g, 39.3 mmol) in MeOH (100 mL) was stirred in the presence of 10% Pd-C (0.88 g) under a hydrogen atmosphere at room temperature for 12 h. Removal of the catalyst followed by concentration in vacuo gave a quantitative yield of 16c (8.9 g) as a colorless oil; $[\alpha]^{24}_{D}$ -85.2 ° (c 1.08, CHCl₃); ¹H NMR

(400 MHz, CDCl₃) δ 0.96 (3H, t, J = 7.3 Hz), 1.04 (3H, s), 1.06-1.15 (1H, m), 1.18 (3H, s), 1.23-1.28 (1H, m), 1.62-1.69 (2H, m), 1.77-1.81 (1H, m), 1.83-1.91 (2H, m), 1.97-2.02 (1H, m), 2.41-2.47 (1H, m), 3.42 (1H, dt, J = 6.1, 9.2 Hz), 3.59 (1H, dt, J = 6.1, 9.2 Hz), 3.76 (1H, dd, J = 3.1, 7.3 Hz), 11.20 (1H, br s).

(IR,2R)-2-Benzyloxy-7,7-dimethylbicyclo[2.2.1]heptane-1-methanol (18a). Similar procedure as 15a, 14 (3.5 g, 17.7 mmol) with benzyl bromide (12.1 g, 70.8 mmol) and NaH (60% in oil; 1.7 g, 42.5 mmol) gave methyl (IS,2R)-2-benzyloxy-7,7-dimethylbicyclo[2.2.1]heptane-1-carboxylate (15c) (5.6 g, quant.) as a colorless oil, which was treated with LiAlH₄ (1.3g, 35.4 mmol) in Et₂O (52 mL) at 0 °C, quenched with H₂O (10 mL) and acidificated with HCl. Product was extracted (EtOAc, 100 mL × 3), washed (brine, 50 mL × 3) and dried (Na₂SO₄). Evaporation in vacuo followed by column chromatography on silica gel (CH₂Cl₂ to CH₂Cl₂-EtOAc (9:1)) gave 18a (3.6 g, 78%) as a colorless oil; ¹H NMR (60 MHz, CDCl₃) δ 0.78-2.13 (7H, m), 0.92 (3H, s), 1.23 (3H, s), 2.29 (1H, br), 3.51-3.89 (3H, m), 4.38 (1H, d, J = 11.6 Hz), 4.50 (1H, d, J = 11.6 Hz), 7.23 (5H, s).

(18b). The alcohol 18a (3.6 g, 13.7 mmol) was treated with chloromethyl methyl ether (4.4 g, 54.9 mmol) and NaH (60% in oil; 1.3 g, 32.9 mmol) in DMF (41.4 mL) at room temperature for 2 h. The usual work-up, followed by chromatography on silica gel (hexane-CH₂Cl₂ (5:5 to 1:9) with 0.5% NEt₃) gave 18b (3.4 g, 80%) as a colorless oil; ¹H NMR (60 MHz, CDCl₃) δ 0.80-2.20 (7H, m), 0.89 (3H, s), 1.09 (3H, s), 3.28 (3H, s), 3.28-3.70 (1H, m), 3.48 (1H, d, J = 9.4 Hz), 3.79 (1H, d, J = 9.4 Hz), 4.56 (2H, s), 4.34-4.69 (2H, m), 7.21 (5H, s).

(1R, 2R)-2-[(2,2-Dimethylpropyl)oxy]-1-methoxymethoxymethyl-7,7-dimethylbicyclo-[2.2.1]heptane (19a). A solution of 18b (3.0 g, 9.9 mmol) in MeOH (31.4 mL) was shaken in the presence of 10% Pd-C (0.946 g) in an atmosphere of hydrogen (1.7 kg/cm²) at room temperature for 22 h. Purification of the product by chromatography on silica gel (CH₂Cl₂ to CH₂Cl₂-EtOAc (8:2) with 0.5% NEt₃) gave (1R,2R)-2-hydroxy-1-methoxymethoxymethyl-7,7-dimethylbicyclo[2.2.1]heptane (18c) (2.0 g, 96%) as a colorless oil; ¹H NMR (60 MHz, CDCl₃) δ 0.80-1.90 (7H, m), 0.87 (3H, s), 1.14 (3H, s), 2.90 (1H, d, J = 2.4 Hz), 3.36 (3H, s), 3.64 (1H, d, J = 9.8 Hz), 3.70-4.06 (1H, m), 3.74 (1H, d, J = 9.8 Hz), 4.60 (2H, s).

The mixture of 18c (2.0 g, 9.5 mmol) and NaH (0.7 g, 28.5 mmol) in *N*-methyl-2-pyrrolidinone (7 mL) was stirred at room temperature for 1 h. To this solution was added 1-iodo-2,2-dimethylpropane (9.4 g, 47.6 mmol), followed by heating at 100-110 °C for 3 h. The usual work-up, followed by chromatography on silica gel (hexane-CH₂Cl₂ (5:5 to 1:9) with 0.5% NEt₃) afforded 19a (2.0 g, 75%) as a colorless oil; ¹H NMR (60 MHz, CDCl₃) δ 0.88 (12H, s), 0.90-2.00 (7H, m), 1.04 (3H, s), 2.89 (1H, d, J = 8.2 Hz), 2.98 (1H, d, J = 8.2 Hz), 3.31 (3H, s), 3.35-3.58 (1H, m), 3.48 (1H, d, J = 9.4 Hz), 3.69 (1H, d, J = 9.4 Hz), 4.57 (2H, s).

(IR,2R)-2-[(2,2-Dimethylpropyl)oxy]-7,7-dimethylbicyclo[2.2.1]heptane-1-carboxylic acid ((IS,2R)-2-neopentyloxy-1-apocamphanecarboxylic acid) (16d). Compound 19a (1.6 g, 5.7 mmol) was dissolved in MeOH (20 mL) saturated with anhydrous HCl and the mixture was stirred for 5 min at room temperature. Evaporation, followed by chromatography on silica gel (CH_2CI_2 to CH_2CI_2 :EtOAc (9:1)) yielded (IR,2R)-2-[(2,2-dimethylpropyl)oxy]-1-hydroxymethyl-7,7-dimethylbicyclo[2.2.1]heptane (19b) (1.3 g, 97%) as a colorless oil; 1H NMR (60 MHz, $CDCI_3$) δ 0.89 (12H, s), 0.95-2.02 (7H, m), 1.20 (3H, s), 2.90 (1H, br s), 2.91 (1H, d, J = 8.0 Hz), 3.06 (1H, d, J = 8.0 Hz), 3.38-3.90 (3H, m).

The alcohol (19b) (1.3 g, 5.6 mmol) was oxidized with PCC (pyridinium chlorochromate; 2.4 g, 11.1 mmol) in CH₂Cl₂ (11.4 mL) at room temperature for 4 h. Et₂O (11.4 mL) was added and the mixture was filtered through a short silica gel column (EtOAc as eluent). After concentration *in vacuo*, acetone (12.1 mL) and aqueous KMnO₄ solution (1.1 g, 6.7 mmol) were added and the resulting solution was stirred at room temperature for 1 h. The reaction was quenched with 30% HCHO solution (8 mL) and then stirred at room temperature for 30 min. The precipitate was filtered off and the filtrate was acidified, extracted (EtOAc; 100 mL × 2), washed (brine, 45 mL × 3) and dried (Na₂SO₄). Evaporation *in vacuo* followed by chromatography on silica gel (CH₂Cl₂ to CH₂Cl₂-EtOAc (8:2)) yielded **16d** (1.1 g, 77%) as colorless crystals, mp 106.0 °C (from hexane); $[\alpha]^{25}D^{-88.7}$ ° (c 0.59, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 0.95 (9H, s), 1.05 (3H, s), 1.13-1.17 (1H, m), 1.19 (3H, s), 1.23-1.29 (1H, m), 1.7 (1H, dd, J = 7.3, 13.2 Hz), 1.85-1.99 (3H, m), 2.41-2.47 (1H, m), 3.12 (1H, d, J = 8.4 Hz), 3.2 (1H, d, J = 8.4 Hz), 3.74 (1H, dd, J = 3.3, 7.3 Hz). Anal. Calcd for C₁5H₂6O₃; C, 70.83; H, 10.30. Found: C, 71.08; H, 10.41.

[(1S)-2-Alkoxy-1-apocamphanecarbonyl]-2-oxazolones (21a-c): General Procedure. To a solution of (1S,2R)-2-alkoxy-7,7-dimethylbicyclo[2.2.1]heptane-1-carboxylic acids (16) in THF was added BuLi (1.0 eq. in hexane) at -78 °C. After stirring for 30 min, DPPOx¹¹ (20) (diphenyl 2-oxo-3-oxazolinylphosphonate; 1.0 eq.) in THF was added at -78 °C and the mixture was stirred at 0 °C for 5 h. The solution was passed through a silica gel-pad (EtOAc as eluent) and the products were purified by column chromatography on silica gel (hexane-CH₂Cl₂ (1:1) to CH₂Cl₂).

[(1R,2R)-2-Methoxy-7,7-dimethylbicyclo[2.2.1]heptane-1-carbonyl]-2-oxazolone (21a): 91% yields as colorless crystals, mp 77.5-78 °C (from hexane); $[\alpha]^{30}_{\rm D}$ -58.0 ° (c 1.0, CHCl₃); $^{1}{\rm H}$ NMR (400 MHz, CDCl₃) δ 1.14 (1H, s), 1.17-1.21 (1H, m), 1.32 (3H, s), 1.61-1.93 (5H, m), 2.39-2.43(1H, m), 3.18 (3H, s), 4.61 (1H, dd, J = 3.7, 7.7 Hz), 6.78 (1H, d, J = 2.2 Hz), 7.29 (1H, d, J = 2.2 Hz). Anal. Calcd for C₁₄H₁₉NO₄: C, 63.38; H, 7.22; N, 5.28. Found: C, 63.32; H, 7.18; O, 5.39.

[(1R,2R)-2-Propoxy-7,7-dimethylbicyclo[2.2.1]heptane-1-carbonyl]-2-oxazolone (21b): 70% yields as a colorless oil; $[\alpha]^{30}_{\rm D}$ -55.5 ° (c 0.94, CHCl₃); ¹H NMR (400MHz, CDCl₃) δ 0.76 (3H, t, J=7.3 Hz), 1.15 (3H, s), 1.16-1.20 (1H, m), 1.33 (3H, s), 1.37-1.45 (2H, m), 1.67-1.71 (2H, m), 1.79-1.92 (3H, m), 2.40-2.46 (1H, m), 3.11 (1H, dt, J=6.7, 9.2 Hz), 3.38 (1H, dt, J=6.7, 9.2 Hz), 4.63 (1H, q, J=3.7 Hz), 6.77 (1H, d, J=1.8 Hz), 7.28 (1H, d, J=1.8 Hz); MS (EI): m/z 293 (M⁺), 209 ([M-84]⁺); HRMS (EI) Calcd for $C_{16}H_{23}NO_4$ (M⁺): m/z 293.1627, found: m/z 293.1601.

[(1R,2R)-2-[(2,2-Dimethylpropyl)oxy]-7,7-dimethylbicyclo[2.2.1]heptane-1-carbonyl]-2-oxazolone (21c): 79% yields as colorless crystals, mp 51.0-51.5 °C (from hexane); $[\alpha]^{24}D$ -55.0 ° (c 1.00, CHCl₃); ¹H NMR (400MHz, CDCl₃) δ 0.74 (9H, s), 1.17 (3H, s), 1.20-1.22 (1H, m), 1.31 (3H, s), 1.63-1.70 (2H, m), 1.82-1.87 (3H, m), 2.41-2.46 (1H, m), 2.76 (1H, d, J = 8.1 Hz), 3.07 (1H, d, J = 8.1 Hz), 4.62 (1H, dd, J = 3.7, 7.7 Hz), 6.75 (1H, d, J = 2.2 Hz), 7.28 (1H, d, J = 2.2 Hz). Anal. Calcd for C₁₈H₂₇NO₄: C, 67.26; H, 8.47; N, 4.36. Found: C, 66.95; H, 8.50; N, 4.28.

Cycloadducts of 3-Acyl-2-oxazolones with Azodicarboxylates: General Procedure. A mixture of 3-acyl-2-oxazolone (1 mmol) and azodicarboxylate (3 mmol) in benzene (0.14 mL) was heated under reflux for 6-19 h. The cycloadducts were isolated by chromatography on silica gel with hexane-CH₂Cl₂ or hexane-EtOAc. The diastereomeric cycloadducts derived from 3-[(1S)-2-alkoxy-1-apocamphane-carbonyl]-2-oxazolone were readily separable by chromatography on silica gel and the isomeric ratio was determined by $^1\mathrm{H}$ NMR-analysis based on peaks H_a or H_b and their chemical shifts (δ) are given in Table 7.

Table 7. ¹H NMR Spectral Data Characteristic of Cycloadducts 22 and 23

Ethyl cis-4a,7a-Dihydro-3-ethoxy-6-oxo-5-pivaloyl-oxazolino[5,4-e][1,3,4]oxadiazine-1-carboxylate (10, \mathbb{R}^1 = CMe₃, \mathbb{R}^2 = Et). From 3-pivaloyl-2-oxazolone (8, \mathbb{R}^1 = CMe₃) (0.5 g, 3.0 mmol) and diethyl azodicarboxylate (1.6 g, 8.9 mmol) the cycloadduct 10 was obtained as a colorless amorphous solid (0.93 g, 92%); IR (nujol, cm⁻¹): 1806, 1752, 1720, 1675; ¹H NMR (400 MHz, CDCl₃) δ 1.35 (3H, t, J = 7.0 Hz), 1.36 (3H, t, J = 7.0 Hz), 1.39 (9H, s), 4.25-4.37 (4H, m), 6.51 (1H, d, J = 5.9 Hz), 6.59 (1H, br d, J = 5.9 Hz); MS (EI): m/z 343 (M⁺), 259 (M+COCMe₃+H), 176 ((NHCO₂Et)₂), 57 (CMe₃); HRMS (EI) calcd for $C_{14}H_{21}N_{3}O_{7}$ (M⁺): m/z 343.1379, found: m/z 343.1370.

Ethyl 5-Benzoyl-cis-4a,7a-dihydro-3-ethoxy-6-oxo-oxazolino[5,4-e][1,3,4]oxadiazine-1-carboxylate (10, $R^1 = Ph$, $R^2 = Et$). From 3-benzoyl-2-oxazolone (8, $R^1 = Ph$) (0.4 g, 2.1 mmol) and diethyl azodicarboxylate (1.1 g, 6.3 mmol) the cycloadduct 10 was obtained as colorless crystals (0.58 g, 76%), mp 147.2 °C (from hexane); IR (nujol, cm⁻¹): 1810, 1724, 1704, 1685; ¹H NMR (400 MHz, CDCl₃) δ 1.36 (6H, t, J = 7.0 Hz), 4.28-4.37 (4H, m), 6.61 (1H, d, J = 5.5 Hz), 6.70 (1H, br d, J = 5.5 Hz), 7.43-7.69 (5H, m). Anal. Calcd for $C_{16}H_{17}N_3O_7$: C, 52.89; H, 4.72; N, 11.57. Found: C, 53.08; H, 4.76; N, 11.77.

^a The peaks assignable to the proton H_b.

(4aS,7aS)- and (4aR,7aR)-Isopropyl cis-4a,7a-Dihydro-3-isopropoxy-5-[(1S)-2-exomethoxy-1-apocamphanecarbonyl]-6-oxo-oxazolino[5,4-e][1,3,4]oxadiazine-1-carboxylates (22 and 23; $R^1 = Me$, $R^2 = i$ -Pr).

(4aS, 7aS)-Isomer (22): 71% yield as a colorless amorphous solid. $[\alpha]^{25}_{\rm D}$ +208.8 ° (c 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.12-1.20 (1H, m), 1.15 (3H, s), 1.25 (3H, s), 1.32 (3H, d, J = 6.2 Hz), 1.33 (3H, d, J = 6.2 Hz), 1.34 (6H, d, J = 6.2 Hz), 1.64-1.70 (2H, m), 1.78-1.94 (3H, m), 2.24-2.30 (1H, m), 3.18 (3H, s), 4.33 (1H, dd, J = 3.7, 7.7 Hz), 5.00 (1H, br septet, J = 6.2 Hz), 5.07 (1H, septet, J = 6.2 Hz), 6.48 (1H, d, J = 5.9 Hz), 6.53 (1H, br d, J = 5.9 Hz); MS (EI): m/z 467(M⁺), 181, 149, 121, 95; HRMS (EI) calcd for C₂₂H₃₃N₃O₈ (M⁺): m/z 467.2268, found: m/z 467.2285.

(4aR, 7aR)-Isomer (23): 22% yield as colorless crystals. mp 155 °C (from hexane); $[\alpha]^{26}_{D}$ -255.4 ° (c 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.10 (3H, s), 1.13-1.17 (1H, m), 1.30 (3H, s), 1.30 (3H, d, J = 6.2 Hz), 1.32 (3H, s), 1.32 (3H, d, J = 6.2 Hz), 1.34 (6H, d, J = 6.2 Hz), 1.66-1.91 (5H, m), 2.17-2.22 (1H, m), 3.19 (3H, s), 4.46 (1H, dd, J = 3.7, 7.7 Hz), 4.96 (1H, br septet, J = 6.2 Hz), 5.08 (1H, septet, J = 6.2 Hz), 6.52 (1H, d, J = 5.9 Hz), 6.57 (1H, d, J = 5.9 Hz). Anal. Calcd for C₂₂H₃₃N₃O₈: C, 56.52; H, 7.11; N, 8.99. Found: C, 56.47; H, 7.07; N, 8.96.

(4*R*,5*S*)-5-[1,2-Bis(isopropoxycarbonyl)hydrazino]-4-methoxy-3-[(1*S*)-2-exomethoxy-1-apocamphanecarbonyl]-2-oxazolidinone (24). A solution of the (4a*S*,7a*S*)-cycloadduct 22 (R¹ = Me, R² = *i*-Pr) (3.5 g, 7.6 mmol) in MeOH (80 mL) was treated with *p*-toluenesulfonic acid monohydrate (72 mg, 0.38 mmol) at room temperature for 3 min. After addition of NEt₃ (152 mg, 1.5 mmol), removal of the solvent, and purification by chromatography on silica gel (CH₂Cl₂ to CH₂Cl₂-EtOAc (9:1)), 24 was obtained (3.5 g, 94%) as colorless crystals, mp 140.7-141.4 °C (from hexane-CH₂Cl₂); [α]²⁶_D +65.2 ° (*c* 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.07 (3H, s), 1.12-1.17 (1H, m), 1.23-1.30 (12H, m), 1.30 (3H, s), 1.64-1.75 (4H, m), 1.88-1.92 (1H, m), 2.04-2.21 (1H, m), 3.22 (3H, s), 3.50 (3H, s), 4.53 (1H, dd, J = 3.7, 7.7 Hz), 4.92-5.02 (2H, m), 5.78 (1H, br s), 6.11 (1H, br), 6.47 (1H, br s). Anal. Calcd for C₂₃H₃₇N₃O₉: C, 55.30; H, 7.45; N, 8.41. Found: C, 55.29; H, 7.52; N, 8.53.

(4S,5R)-5-[1,2-Bis(isopropoxycarbonyl)hydrazino]-4-methoxy-3-[(1S)-2-exomethoxy-1-apocamphanecarbonyl]-2-oxazolidinone (25). Treatment of 23 (R¹ = Me, R² = *i*-Pr) (0.8 g, 1.7 mmol) in MeOH (17 mL) with *p*-toluenesulfonic acid monohydrate (16 mg, 0.09 mmol) as described above, gave the (4S,5R)-form (25) (0.83 g, 97%) as a colorless amorphous solid, $[\alpha]^{26}_D$ -74.8 ° (*c* 0.88, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 1.12 (3H, s), 1.15-1.19 (1H, m), 1.22-1.27 (12H, m), 1.25 (3H, s), 1.65-1.69 (2H, m), 1.79-1.90 (3H, m), 2.17-2.33 (1H, m), 3.18 (3H, s), 3.52 (3H, s), 4.40 (1H, br s), 4.94-5.02 (2H, m), 5.73 (1H, br s), 6.15 (1H, br), 6.50 (1H, br s); MS (EI): m/z 499 (M⁺), 467, 181, 180, 43; HRMS (EI) calcd for C₂₃H₃₇N₃O₉ (M⁺): m/z 499.2530, found: m/z 499.2488.

(4R,5S)-5-[1,2-Bis(isopropoxycarbonyl)hydrazino]-4-methoxy-2-oxazolidinone (26). A mixture of 24 (0.3 g, 0.6 mmol) in THF (10 mL) was treated with LiBH₄ (2.0 M in THF; 2.4 mL, 4.8 mmol) and MeOH (308 mg, 9.6 mmol) at 0 °C in an argon atmosphere for 2.5 h. The mixture was passed through a short column of silica gel with EtOAc as an eluent, which was evaporated *in vacuo*. Chromatography on silica gel (CH₂Cl₂ to CH₂Cl₂-EtOAc (8:2)) afforded, in addition to the oily 2-methoxy-1-apocamphanemethanol (40)¹⁴ (56 mg, 76%), the deacylated 2-oxazolidinone (26) (134 mg, 70%) as a colorless amorphous solid; $[\alpha]^{25}_{\rm D}$ +99.6 ° (c 1.02, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.28 (6H, d, J = 6.2 Hz), 1.29 (6H, d, J = 6.2 Hz), 3.39 (3H, s), 4.92-5.07 (2H, m), 5.07 (1H, br s), 6.20 (1H, br), 6.92 (2H, br s); MS (EI): m/z

 $320(MH^+)$, 204, 162, 118, 76, 43; HRMS (EI) calcd for $C_{12}H_{22}N_3O_7$ (MH⁺): m/z 320.1458, found: m/z 320.1423.

(4S,5R)-5-[1,2-Bis(isopropoxycarbonyl)hydrazino]-4-methoxy-2-oxazolidinone (27) Similar procedure as 26, 25 (828 mg, 1.6 mmol) with LiBH₄ (2.0 M in THF; 3.3 mL, 6.6 mmol) and MeOH (423 mg, 13.2 mmol) in THF (30 mL) gave, in addition to the alcohol 40^{14} (256 mg, 84%), the deacylated 2-oxazolidinone (27) (419 mg, 80%) as a colorless amorphous solid; $[\alpha]^{27}D$ -98.8 ° (c 1.60, CHCl₃). This compound was spectroscopically identical with the enantiomer 26 obtained above.

Exocyclic Deacylation of 28. Similar procedure as **26**, **28** (1.00 g, 3.0 mmol) with LiBH₄ (2.0 M in THF; 5.9 mL, 11.9 mmol) and MeOH (760 mg, 23.7 mmol) in THF (59 mL) gave, in addition to the alcohol **40**¹⁴ (423 mg, 78%), the deacylated 2-oxazolidinone^{2a} (396 mg, 85%) as colorless crystals, mp 49.5-50.5 °C (from hexane); $[\alpha]^{22}_D$ +114.5 ° (c 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 2.38-2.58 (2H, m), 3.33 (3H, s), 4.45 (1H, dt, J = 2.0, 6.0 Hz), 4.70 (1H, d, J = 2.0 Hz), 5.18-5.25 (2H, m), 5.70-5.84 (1H, m), 7.55 (1H, br s). Anal. Calcd for C₇H₁₁NO₃; C, 53.49; H, 7.15; N, 8.91. Found: C, 53.69; H, 7.00; N, 8.65.

Exocyclic Deacylation of 29. Similar procedure as **26**, **29** (3.08 g, 9.3 mmol) with LiBH₄ (2.0 M in THF; 37.2 mL, 74.4 mmol) and MeOH (4.77 g, 0.15 mol) in THF (158 mL) gave, in addition to the alcohol **40**¹⁴ (1.53 g, 89%), the deacylated 2-oxazolidinone^{5a} (1.18g, 84%) as colorless crystals, mp 189 °C (from EtOAc); $[\alpha]^{27}_D$ +85.5 ° (c 1.00, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 1.20 (1H, d, J = 9.5 Hz), 1.47 (1H, dd, J = 1.8, 9.5 Hz), 2.92 (1H, s), 3.14 (1H, s), 3.99 (1H, dd, J = 3.3, 8.4 Hz), 4.91 (1H, dd, J = 4.0, 8.4 Hz), 6.07 (1H, dd, J = 2.9, 5.9 Hz), 6.12 (1H, dd, J = 2.9, 5.9 Hz), 7.57 (1H, br s). Anal. Calcd for C₈H₉NO₂: C, 63.57; H, 6.00; N, 9.27. Found: C, 63.74; H, 6.26; N, 9.20.

Exocyclic Deacylation of 30. Similar procedure as **26**, **30** (1.40 g, 3.0 mmol) with LiBH₄ (2.0 M in THF; 11.9 mL, 23.8 mmol) and MeOH (1.52 g, 47.5 mmol) in THF (52 mL) gave, in addition to the alcohol **40**¹⁴ (0.54 g, 98%), the deacylated 2-oxazolidinone^{5b} (0.79g, 91%) as colorless crystals, mp 287 °C (from hexane-CH₂Cl₂); $[\alpha]^{28}_{D}$ -48.4 ° (c 1.00, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 1.82 (3H, s), 2.05 (3H, s), 3.71 (1H, d, J = 8.8 Hz), 4.51 (1H, d, J = 9.2 Hz), 6.69 (1H, s), 7.18-7.29 (6H, m), 7.35-7.38 (2H, m). Anal. Calcd for C₁₉H₁₇NO₂: C, 78.33; H, 5.88; N, 4.81. Found: C, 78.48; H, 5.84; N, 4.86.

Exocyclic Deacylation of 31. Similar procedure as **26**, **31** (1.51 g, 3.6 mmol) with LiBH₄ (2.0 M in THF; 14.6 mL, 29.1 mmol) and MeOH (1.86 g, 58.2 mmol) in THF (50 mL) gave, in addition to the alcohol **40**¹⁴ (0.65 g, 98%), the deacylated 2-oxazolidinone¹⁶ (0.70g, 82%) as colorless crystals, mp 190.5-191.5 °C (from EtOH); $[\alpha]^{26}_{D}$ -56.8 ° (c 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 0.65 (3H, s), 0.66 (3H, s), 1.00 (3H, s), 1.08 (3H, s), 1.58 (3H, d, J = 1.1 Hz), 1.62 (3H, d, J = 1.1 Hz), 3.86 (1H, d, J = 8.1 Hz), 4.71 (1H, d, J = 8.1 Hz), 6.68 (1H, br s). Anal. Calcd for C₁₄H₂₁NO₂: C, 71.46; H, 8.99; N, 5.95. Found: C, 71.57; H, 9.04; N, 6.08.

(4R,5S)-4-Butyl-5-[1,2-bis(isopropoxycarbonyl)hydrazino]-2-oxazolidinone (32a). Typical Procedure A: A solution of 26 (200 mg, 0.63 mmol) in THF (2.9 mL) and BF₃*OEt₂ (89 mg, 0.63 mmol) were subsequently added to a suspension of CuI (525 mg, 2.8 mmol) and BuLi (1.59 M in hexane; 3.15 mL, 5.0 mmol) in THF (13.2 mL) which had been stirred at -30 °C under an argon atmosphere for 30 min. The mixture was then stirred at -30 °C for an additional 1 h. The reaction was quenched by the addition of saturated NH₄Cl solution (1.4 mL) and EtOAc (100 mL) was added. The whole was washed (i) satd. NH₄Cl aq (20 mL × 3), ii) brine (45 mL × 3)), dried (Na₂SO₄) and evaporated *in vacuo* followed by chromatography on silica gel (hexane:EtOAc (7:3 to 6:4)) to give 32a (170 mg, 79%) as a colorless amorphous solid; $[\alpha]^{27}D + 73.3$ ° (c

1.02, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 0.92 (3H, t, J = 6.7 Hz), 1.26-1.29 (12H, m), 1.33-1.44 (4H, m), 1.61-1.73 (2H, m), 3.83 (1H, br s), 4.98 (2H, m), 5.73-6.30 (2H, br), 6.53-6.91 (1H, br); MS (EI): m/z 346(MH⁺), 302, 259, 204, 162, 118, 103, 76, 43; HRMS (EI) calcd for C₁₅H₂₈N₃O₆ (MH⁺): m/z 346.1978, found: m/z 346.1970.

(4R,5S)-5-[1,2-Bis(isopropoxycarbonyl)hydrazino]-4-isopropyl-2-oxazolidinone (32b). Typical Procedure B: A solution of 26 (150 mg, 0.47 mmol) in THF (2.2 mL) and BF₃•OEt₂ (67 mg, 0.47 mmol) were subsequently added to a suspension of LiCl (175 mg, 4.13 mmol; dried at 150 °C for 1 h under reduced pressure), CuCN (185 mg, 2.07 mmol) and *i*-PrMgBr (0.40 M in THF; 4.70 mL, 1.88 mmol) in THF (9.9 mL) which had been stirred at -30 °C under an argon atmosphere for 30 min. The mixture was then stirred at -30 °C for an additional 1 h. The reaction was quenched by the addition of saturated NH₄Cl aq (1.4 mL) and EtOAc (100 mL) was added. The whole was washed (i) satd. NH₄Cl aq (20 mL × 3), ii) brine (45 mL × 3)), dried (Na₂SO₄) and evaporated *in vacuo* followed by chromatography on silica gel (hexane:EtOAc (7:3 to 6:4)) afforded 32b (132 mg, 85%) as a colorless, amorphous solid; [α]²⁸_D +56.8 ° (*c* 1.06, CHCl₃). ¹H NMR (500 MHz, CDCl₃) δ 0.98 (6H, d, J = 6.7 Hz), 1.29 (12H, d, J = 6.2 Hz), 1.83 (1H, septet, J = 6.7 Hz), 3.61 (1H, br), 4.98 (2H, m), 5.82-6.38 (2H, br), 6.50-6.96 (1H, br s); MS (EI): m/z 332(MH⁺), 302, 288, 245, 204, 162, 118, 76, 43; HRMS (EI) calcd for C₁₄H₂₆N₃O₆ (MH⁺): m/z 332.1822, found: m/z 332.1800.

(4R,5S)-4-tert-Butyl-5-[1,2-bis(isopropoxycarbonyl)hydrazino]-2-oxazolidinone (32c). According to procedure A, treatment of 26 (150 mg, 0.47 mmol) with the cuprates prepared from CuCN (185 mg, 2.07 mmol)/THF (9.9 mL) and tert-BuMgBr (1.12 M in THF; 3.36 mL, 3.76 mmol) in the presence of BF₃•OEt₂ (67 mg, 0.47 mmol) gave 32c (121 mg, 75%) as a colorless, amorphous solid; $[\alpha]^{26}_D$ +50.0 ° (c 0.98, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 0.96 (9H, s), 1.29 (12H, d, J = 6.2 Hz), 3.57 (1H, br), 4.99 (2H, m), 6.29 (2H, br), 6.71 (1H, br s); MS (EI): m/z 346(MH⁺), 288, 204, 162, 118, 76, 57, 43; HRMS (EI) calcd for C₁₅H₂₈N₃O₆ (MH⁺): m/z 346.1978, found: m/z 346.1974.

(4R,5S)-4-Cyclopentyl-5-[1,2-bis(isopropoxycarbonyl)hydrazino]-2-oxazolidinone (32d). According to procedure B, treatment of 26 (100 mg, 0.31 mmol) with the cuprates prepared from LiCl (117 mg, 2.76 mmol), CuCN (123 mg, 1.38 mmol)/THF (5.0 mL) and *cyclo*-C₅H₉MgBr (0.44 M in THF; 2.82 mL, 1.25 mmol) in the presence of BF₃•OEt₂ (45 mg, 0.31 mmol) gave 32d (90 mg, 80%) as a colorless, amorphous solid; $[\alpha]^{28}_D$ +67.5 ° (*c* 1.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.15-1.42 (3H, m), 1.28 (12H, d, J = 6.2 Hz), 1.63 (4H, m), 1.82 (1H, m), 2.04-2.12 (1H, m), 3.71 (1H, br s), 4.98 (2H, m), 6.26 (2H, br), 6.70 (1H, br s); MS (EI): m/z 358(MH⁺), 314, 271, 204, 162, 118, 103, 76, 43; HRMS (EI) calcd for C₁₆H₂₈N₃O₆ (MH⁺): m/z 358.1978, found: m/z 358.1988.

(4R,5S)-4-Cyclohexyl-5-[1,2-bis(isopropoxycarbonyl)hydrazino]-2-oxazolidinone (32e). According to procedure B, treatment of 26 (100 mg, 0.31 mmol) with the cuprates prepared from LiCl (117 mg, 2.76 mmol), CuCN (123 mg, 1.38 mmol)/THF (5.0 mL) and *cyclo*-C₆H₁₁MgBr (0.31 M in THF; 4.04 mL, 1.25 mmol) in the presence of BF₃•OEt₂ (45 mg, 0.31 mmol) gave 32e as a colorless, amorphous solid; $[\alpha]^{26}_{\rm D}$ +53.9 ° (c 0.99, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.02 (2H, m), 1.09-1.36 (4H, m), 1.28 (12H, d, J = 6.2 Hz), 1.50 (1H, m), 1.61-1.85 (4H, m), 3.58 (1H, br s), 4.98 (2H, m), 6.23 (2H, br), 6.67 (1H, br s); MS (EI): m/z 372(MH⁺), 328, 285, 204, 162, 118, 103, 76, 43; HRMS (EI) m/z calcd for C₁₇H₃₀N₃O₆ (MH⁺): m/z 372.2135, found: m/z 372.2133.

(4R,5S)-5-[1,2-Bis(isopropoxycarbonyl)hydrazino]-4-phenyl-2-oxazolidinone (32f). According to procedure B, treatment of 26 (450 mg, 1.41 mmol) with the cuprates prepared from LiCl (526

mg, 12.40 mmol), CuCN (555 mg, 6.20 mmol)/THF (33.8 mL) and PhMgBr (0.63 M in THF; 8.90 mL, 5.64 mmol) in the presence of BF₃*OEt₂ (200 mg, 1.41 mmol) gave **32f** (440 mg, 85%) as colorless crystals, mp 148-149 °C (from hexane-CH₂Cl₂); $[\alpha]^{29}_{D}$ +97.0 ° (c 1.01, CHCl₃); $^{1}_{H}$ NMR (400 MHz, CDCl₃) δ 1.23-1.32 (12H, m), 4.98 (3H, m), 6.28 (1H, br s), 5.91-6.51 (1H, br), 6.90 (1H, br), 7.34-7.42 (5H, m). Anal. Calcd for C₁₇H₂₃N₃O₆: C, 55.88; H, 6.34; N, 11.50. Found: C, 55.68; H, 6.35; N, 11.28.

(4R,5S)-4-Benzyl-5-[1,2-bis(isopropoxycarbonyl)hydrazino]-2-oxazolidinone (32g). According to procedure A, treatment of 26 (150 mg, 0.47 mmol) with the cuprates prepared from CuCN (185 mg, 2.07 mmol)/THF (9.9 mL) and PhCH₂MgCl (1.06 M in THF; 3.56 mL, 3.76 mmol) in the presence of BF₃•OEt₂ (67 mg, 0.47 mmol) gave 32g (140 mg, 79%) as a colorless, amorphous solid; $[\alpha]^{26}D$ +72.6° (c 1.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.26 (12H, d, J = 6.2 Hz), 2.84 (1H, br s), 3.06 (1H, br s), 4.11 (1H, br s), 4.96 (2H, septet, J = 6.2 Hz), 5.42-6.47 (2H, br), 6.86 (1H, br); MS (EI): m/z 379(MH⁺), 293, 288, 204, 162, 118, 91, 76, 43; HRMS (EI) calcd for C₁₈H₂₅N₃O₆ (MH⁺): m/z 379.1743, found: m/z 379.1764.

(4R,5S)-4-Allyl-5-[1,2-bis(isopropoxycarbonyl)hydrazino]-2-oxazolidinone (32h). To a solution of 26 (100 mg, 0.31 mmol) and allyltrimethylsilane (143 mg, 1.25 mmol) in CH₂Cl₂ (2.5 mL) was added BF₃•OEt₂ (45 mg, 0.31 mmol) in CH₂Cl₂ (0.6 mL) at -50 °C under an argon atmosphere, followed by stirring at room temperature for 10 h. The mixture was passed through a short column of silicagel with EtOAc as an eluent. Concentration of the mixture *in vacuo* followed by chromatography on silica gel (hexane-EtOAc (7:3 to 6:4)) afforded 32h (97 mg, 94%) as a colorless amorphous solid; $[\alpha]^{26}_D$ +75.4 ° (c 1.01, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.28 (12H, d, J = 5.9 Hz), 2.34-2.50 (2H, m), 3.95 (1H, br s), 4.97 (2H, m), 5.21 (1H, d, J = 10.3 Hz), 5.23 (1H, d, J = 18.3 Hz), 5.72-5.82 (1H, m), 6.14 (2H, br), 6.84 (1H, br s); MS (EI): m/z 330 (MH⁺), 243, 204, 162, 118, 76, 43; HRMS (EI) calcd for C₁₄H₂₄N₃O₆ (MH⁺): m/z 330.1665, found: m/z 330.1697.

(4R,5S)-5-[1,2-Bis(isopropoxycarbonyl)hydrazino]-4-vinyl-2-oxazolidinone (32i). According to procedure A, treatment of 26 (450 mg, 1.41 mmol) with the cuprates prepared from CuCN (555 mg, 6.20 mmol)/THF (33.8 mL) and CH₂=CH-MgBr (1.01 M in THF; 11.16 mL, 11.28 mmol) in the presence of BF₃•OEt₂ (200 mg, 1.41 mmol) gave 32i (320 mg, 72%) as a colorless, amorphous solid; $[\alpha]^{26}$ D+86.3 ° (c 0.98, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 1.28 (6H, d, J = 6.2 Hz), 1.29 (6H, d, J = 6.2 Hz), 4.39 (1H, br s), 4.98 (2H, m), 5.32 (1H, d, J = 10.3 Hz), 5.42 (1H, d, J = 16.9 Hz), 5.90 (1H, ddd, J = 6.6, 10.3, 16.9 Hz), 5.96 (1H, br), 6.21 (1H, br s), 6.92 (1H, br s); MS (EI): m/z 316(MH⁺), 288, 272, 204, 162, 118, 76, 43; HRMS (EI) calcd for C₁₃H₂₂N₃O₆ (MH⁺): m/z 316.1508, found: m/z 316.1512.

N-tert-Butoxycarbonylation of Compound 33. General Procedure: In a typical experiment, a solution of the 2-oxazolidinones (32) (1 mmol) in CH₂Cl₂ (20 mL) was treated with di-t-butyl dicarbonate (3 eq.) in the presence of NEt₃ (3.5 eq.) and DMAP (1 eq.) at room temperature for 9 h. The mixture was concentrated in vacuo and purified by chromatography on silica gel to give the di-Boc derivatives 33 in quantitative yield.

2-Amino Alcohols (34). General Procedure: A series of *N*-Boc-2-oxazolidinones (**33**) (1 mmol) were treated with NaBH₄ (4 mmol) and MeOH (4 mmol) at room temperature in EtOH (20 mL) for 24 h. The mixture was filtered through a short column of silica gel using EtOAc as an eluent. Concentration of the mixture *in vacuo* followed by column chromatography on silica gel (CH₂Cl₂-EtOAc (9:1 to 7:3)) afforded *N-tert*-butoxycarbonyl-2-amino alcohols **34** (71-80%). The optical purity of the 2-amino alcohols thus obtained was

found to exceed 99 %ee by HPLC analysis as the MTPA esters ((R)-(+)-2-methoxy-2-(trifluoromethyl) phenylacetates) (DAICEL CHIRALCEL OJ for 34a,b,h,i, DAICEL CHIRALCEL OD for 34c-f) or the 4-benzyl-2-oxazolidinone (DAICEL CHIRALCEL OD for 34g) (Table 5).

N-Boc-α-Amino Acid Methyl Esters (35).

PDC Oxidation of 34. General Procedure: To a solution of N-Boc-2-amino alcohol **34** (0.5 mmol) in DMF (1 mL/PDC 1 g) was added pyridinium dichromate (PDC) (7.5 mmol, 15 eq.) and the solution was stirred at room temperature for 6 h. After addition of H_2O (5 mL), the product was extracted with EtOAc (50 mL × 4), washed (brine, 20 mL × 3) and dried (Na₂SO₄). The solution was evaporated *in vacuo* to give the α -amino acid which was converted into the methyl ester with diazomethane and purified by column chromatography on silica gel (hexane-CH₂Cl₂ (2:8) to CH₂Cl₂-EtOAc (95:5)) (Table 5).

Oxidative Conversion of 33. General Procedure: To a solution of 33 (0.2 mmol) in t-BuOH (4 mL)-H₂O (2 mL) were added KMnO₄ (8 mmol, 40 eq.) and KOH (4 mmol, 20 eq.). After vigorous stirring at room temperature for 17-23 h, the reaction was quenched with aqueous formaldehyde (4 mL) at 0 °C, acidified with citric acid and extracted with EtOAc (35 mL × 4). The combined extracts were evaporated in vacuo to give the N-Boc- α -amino acid, which was treated with diazomethane. Column chromatography on silica gel (hexane-CH₂Cl₂ (2:8) to CH₂Cl₂-EtOAc (95:5)) afforded N-Boc- α -amino acid methyl ester (35), identical with the product derived from the PDC oxidation of 34. The optical purity of the protected α -amino acids thus obtained was found to exceed 99 %e.e. by HPLC analysis (Merck LiChrospher Si60) as the MTPA amides except for 35f directly analyzed.

trans-4-Allyl-5-methoxy-2-oxazolidinone (36). Compound 33h (3.1 g, 5.9 mmol) was treated with Cs₂CO₃ (0.58 mg, 1.8 mmol) in MeOH (59 mL) at room temperature for 2 h. The solution was filtered through a short column of silica gel with EtOAc as an eluent. Concentration of the mixture in vacuo, followed by column chromatography on silica gel (CH₂Cl₂ to CH₂Cl₂-EtOAc (95:5)) gave 36 (0.92 g, 60%) as a colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.55 (9H, s), 2.40 (1H, m), 2.59 (1H, m), 3.50 (3H, s), 4.07 (1H, dd, J = 3.7, 8.8 Hz), 4.98 (1H, d, J = 1.1 Hz), 5.17-5.24 (2H, m), 5.67-5.76 (1H, m).

4-Substituted-2-oxazolidinones (39). General Procedure: A solution of the N-Boc-2-amino alcohol **34** (1 mmol) in THF (20 mL) was treated with thionyl chloride (8 mmol) at 0 °C for 3 h. Evaporation *in vacuo* followed by column chromatography on silica gel (CH₂Cl₂-EtOAc (9:1 to 8:2)) afforded a quantitative yield of **39** as colorless crystals.

REFERENCES AND NOTES

- 1. For a preliminary communication see: Matsunaga, H.; Ishizuka, T.; Marubayashi, N.; Kunieda, T. Chem. Pharm. Bull. 1992, 40, 1077.
- (a) Kunieda, T.; Ishizuka, T.; Higuchi, T.; Hirobe, M. J. Org. Chem. 1988, 53, 3381. (b) Ishibuchi, S.; Ikematsu, Y.; Ishizuka, T.; Kunieda, T. Tetrahedron Lett. 1991, 32, 3523. (c) Ishizuka, T.; Kunieda, T. J. Synth. Org. Chem. Jpn. 1991, 49, 118. (d) Ishibuchi, S.; Nagatani, T.; Ishizuka, T.; Kunieda, T. Natural Products Letters 1992, 1, 21. (e) Ishizuka, T.; Ishibuchi, S.; Kunieda, T. Tetrahedron 1993, 49, 1841. (f) Kunieda, T.; Ishizuka, T. Studies in Natural Products Chemistry, Stereoselective Synthesis (Part H); Ed. Atta-ur-Rahman; Elsevier Science Publishers, Amsterdam, Holland, 1993, pp.411-444.
- (a) Williams, R. M. Synthesis of Optically Active α-Amino Acids; Pergamon Press: Oxford, 1989; Vol.
 (b) Williams, R. M. Aldrichimica Acta 1992, 25, 11.
- (a) Scholz, K. H.; Heine, H. G.; Hartmann, W. Justus Liebigs Ann. Chem. 1977, 2027. (b) Deyrup, J. A.; Gingrich, H. L. Tetrahedron Lett. 1977, 3115. (c) D'Andrea, S. V.; Freeman, J. P.; Szmuszkovics, J. J. Org. Chem. 1990, 55, 4356.
- 5. (a) Matsunaga, H.; Kimura, K.; Ishizuka, T.; Haratake, M.; Kunieda, T. *Tetrahedron Lett.* **1991**, *32*, 7715. (b) Kimura, K.; Murata, K.; Otsuka, K.; Ishizuka, T.; Haratake, M.; Kunieda, T. *Tetrahedron Lett.* **1992**, *33*, 4461.
- 6. Boger, D. L.; Weinreb, S. M. Hetero Diels-Alder Methodology in Organic Synthesis; Academic Press: New York, 1987.
- (a) Firl, J.; Sommer, S. Tetrahedron Lett. 1969, 1133. (b) Idem, ibid. 1969, 1137. (c) Idem, ibid. 1970, 1925. (d) Idem, ibid. 1970, 1929. (e) Idem, ibid. 1971, 4193. (f) Idem, ibid. 1972, 4713.
- 8. (a) Gustorf, E. K.; Leitich, J. Tetrahedron Lett. 1963, 3109. (b) Idem, ibid. 1969, 3113. (c) Gustorf, E. K.; White, D. V.; Kim, B.; Hess, D.; Leitich, J. J. Org. Chem. 1970, 35, 1155.
- (a) Fitzsimmons, B. J.; Leblanc, Y.; Rokach, J. J. Am. Chem. Soc. 1987, 109, 285. (b) Fitzsimmons,
 B. J.; Leblanc, Y.; Chan, N.; Rokach, J. ibid. 1988, 110, 5229. (c) Leblanc, Y.; Fitzsimmons, B. J.;
 Springer, J. P.; Rokach, J. ibid. 1989, 111, 2995. (d) Leblanc, Y.; Fitzsimmons, B. J. Tetrahedron Lett.
 1989, 30, 2889.
- 10. Ishizuka, T.; Kimura, K.; Ishibuchi, S.; Kunieda, T. Chem. Pharm. Bull. 1990, 38, 1717.
- (a) Kunieda, T.; Abe, Y.; Higuchi, T.; Hirobe, M. Tetrahedron Lett. 1981, 22, 1257. (b) Kunieda, T.;
 Hirobe, M. J. Synth. Org. Chem. Jpn. 1983, 41, 77. (c) Nagamatsu, T.; Kunieda, T. Tetrahedron Lett.
 1987, 28, 2375. (d) Kunieda, T.; Nagamatsu, T.; Higuchi, T.; Hirobe, M. ibid. 1988, 29, 2203. (e)
 Kunieda, T. Yakugaku Zassi 1988, 108, 593;
- 12. Ishizuka, T.; Kimura, K.; Ishibuchi, S.; Kunieda, T. Chem. Lett. 1992, 991.
- (a) Evans, D. A.; Ennis, M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737. (b) Evans, D. A.; Morrissey, M. M.; Dorow, R. L. ibid. 1985, 107, 4346. (c) Evans, D. A.; Bender, S. L. Tetrahedron Lett. 1986, 27, 799. (d) Evans, D. A.; Sjogren, E. B.; Bartroli, J.; Dow, R. L. ibid. 1986, 27, 4957. (e) Evans, D. A.; Ellman, J. A.; Dorow, R. L. ibid. 1987, 28, 1123. (f) Evans, D. A.; Britton, T. C.; Ellman, J. A. ibid. 1987, 28, 6141. (g) Ito, Y.; Terashima, S. ibid. 1987, 28, 6625. (h) Damon, R. E.; Coppola, G. M. ibid. 1990, 31, 2849.

14. Combined reagents, TEMPO (2,2,6,6,-tetramethyl-1-piperidinyloxy free radical)/NaClO,²² were found to be suitable for conversion of the recovered 2-methoxy-1-apocamphanemethanol (40) to the corresponding carboxylic acid (16a) for reuse.

- (a) Brown, H. C.; Narasimhan, S.; Choi, Y. M. J. Org. Chem. 1982, 47, 4702.
 (b) Soai, K.;
 Ookawara, A. ibid. 1986, 51, 4000.
 (c) Soai, K. J. Synth. Org. Chem. Jpn. 1987, 45, 1148.
- 16. Hashimoto, N.; Ishizuka, T.; Kunieda, T. Tetrahedron Lett. 1994, 35, 721.
- trans-Stereoselectivity might be rationalized by an exclusive attack of nucleophiles to the iminium cationlike intermediates from less hindered side.
- 18. Ishizuka, T.; Kunieda, T. Tetrahedron Lett. 1987, 28, 4185.
- 19. Evans, D. A. Aldrichimica Acta 1982, 15, 23.
- 20. Evans, D. A.; Mathre, D. J.; Scott, W. L. J. Org. Chem. 1985, 50, 1830.
- 21. Scholz, K. H.; Heine, H. G.; Hartmann, W. Justus Liebigs Ann. Chem. 1976, 1319.
- 22. Leanna, M. R.; Sowin, T. J.; Morton, H. E. Tetrahedron Lett. 1992, 33, 5029.

(Received in Japan 9 September 1996; accepted 18 November 1996)